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Abstract. This paper is a continuation of our previous work (B¢bE and Mangazee/ V 1999

J. Phys. A: Math. Gen323041-54). We obtain two more functional relations for the eigenvalues
of the transfer matrices for thé(3) chiral Potts model at? = —1. This model, up to a modification

of boundary conditions, is equivalent to the three-layer three-dimensional Zamolodchikov model.
From these relations we derive the Bethe ansatz equations.

1. Introduction

One of the open problems in the theory of integrable statistical systems is to construct the
Bethe ansatz technique for three-dimensional integrable lattice models. A construction of such
a model is connected with the problem of solving tetrahedron equations [3, 4] which insure
integrability of a three-dimensional model. These are a system of thousands of equations in
the simplest nontrivial case. Hence, the problem of solving them is very difficult.

There are only a few known integrable three-dimensional models which are interesting
from the physical point of view. The first nontrivial example of such a model was proposed
by Zamolodchikov in 1980 in [1,2]. The tetrahedron equations for the Zamolodchikov model
were proved by Baxter in [5].

Bazhanov and Stroganov [6] observed that the Zamolodchikov model and the three-
dimensional free-fermion model were ‘weakly equivalent’, i.e., the free energy of the
Zamolodchikov model and the free-fermion model satisfied the same symmetry and inversion
relations. The assumption that analytical properties of the free energy were also the same
resulted in a coincidence of the free energy for the Zamolodchikov model and the free-
fermion model. In 1986 Baxter [7] calculated the partition function and free energy for
the Zamolodchikov model with some modification of boundary conditions for the case of the
infinite cubic lattice and for the case of the lattice which is infinite in two dimensions and
finite in the third one. His result was similar to the result by Bazhanov and Stroganov for the
free-fermion model but not the same. Namely, the free energy for the Zamolodchikov model
was made up of a sum of two parts. The first part coincided with the free energy of the free
fermion model and had the usual analytical properties for two-dimensional models. The second
part was expressed in terms of the Euler dilogarithm function and had the cut in the complex
plane. Therefore, the assumption that the free energy for the Zamolodchikov model and the
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free-fermion model had the same analytical properties was incorrect. However, the similarity
of these results was remarkable. Later Baxter and Quispel in [17] tried to clarify this fact.
Namely, they constructed the Hamiltonian for the two- and three-layer Zamolodchikov model.
The two-layer case turned out to correspond to the two-dimensional free-fermion model. The
Hamiltonian for the three-layer case contained cubic interaction terms and did not seem to be
the Hamiltonian for the free-fermion model.

Another important step in the theory of the integrable three-dimensional models was
performed by Baxter and Bazhanov in 1992. Namely, they observed [9] that(ihechiral
Potts model a4 = 1 [14, 15] was equivalent to thelayer three-dimensional model which
turned out to be th&/-state generalization of the Zamolodchikov model. Itwas also mentioned
that as for the Zamolodchikov model this equivalence is valid only up to some modification
of boundary conditions which should not effect the partition function in the thermodynamic
limit. The partition function for the Baxter-Bazhanov model was calculated in their next
paper [10]. The result appeared to be connected in a remarkably simple way with that for the
Zamolodchikov model.

We hope that a development of the Bethe ansatz technique for the Zamolodchikov and
Baxter—Bazhanov models could shed a new light on the problems discussed above. Since
then-layer case of the Zamolodchikov model is equivalent tosttie) chiral Potts model at
g% = —1, up to a modification of boundary conditions, we can try to construct a Bethe ansatz
for thesl(n) chiral Potts model.

The Bethe ansatz technique is usually applicable to the study of effects connected with the
finite size of a lattice. Therefore, there is a good chance that it will be useful for an investigation
of the finite size corrections and the excitations.

Ouir first step is to develop this programme for the three-layer case of the Zamolodchikov
model with modified boundary conditions, i.e., for #i€3) chiral Potts model a® = —1.

This work is a continuation of our previous paper [18] where some functional relations
for the s1(3) chiral Potts model a42 = —1 were derived and the nested Bethe ansatz was
constructed in the particular case when the vertical rapidity parameters coincide. Unfortunately,
we did not succeed in solving these functional relations. Our goal here is to derive other
functional relations and to obtain from them the Bethe ansatz equations for the general case.

The paper is organized as follows. In section 2 we recall the basic formulations of the
s1(3) chiral Potts model and its correspondence to the modified three-layer Zamolodchikov
model. In section 3 we fix the definitions of the transfer matrices and discuss some of their
simple properties. In section 4 we give two functional relations for the eigenvalues of the
transfer matrices. In section 5 we obtain the Bethe ansatz equations. In the last section we
give a brief discussion of the obtained results and directions for further investigation. In the
appendix we outline the basic steps of the proof of one of the functional relations.

2. Basic formulations

The basic formulation of the Zamolodchikov model and it's generalization, the Baxter—
Bazhanov model, can be found in papers [1, 2, 9]. In the last paper it was observed that the
Boltzmann weights for thel(n) chiral Potts model a2V = 1 were a product of the more
simple weights (see formulae (3.7)—(3.13) of [9]). Hence, the ‘star’ weight/fan chiral
Potts model appeared to be a product ofitheeight functions interpreted as the Boltzmann
weights for someV-state three-dimensional model:

Each weight of the product in the RHS depends on the eight spins Mitfossible
values. For the cas® = 2 this model turned out to be just the Zamolodchikov model
rewritten by Baxter in the ‘interaction-round-cube’ form [5]. As it was already mentioned in
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Figure 2.

the introduction, this equivalence is valid up to some modification of boundary conditions.

Since we study the three-layer case of the Zamolodchikov model we need to consider
the s/(3) chiral Potts model a3> = —1. The basic notations of this model were adduced in
papers [14,16] or in [9]. It can also be found in our previous paper [18], but to be independent
we give some necessary basic definitions below.

The model is formulated on the square lattice (see figure 2).

The interaction is defined by two kinds of the Boltzmann Weigﬁtﬁi (o, B) and
(W, (e, B))~1 which depend on the neighbouring spin variables and spectral parameters.
The rule for choosing these weights is shown in figure 3:

The Boltzmann weights depend on the rapidity parameters. Each rapidity variable is
represented by three two-vectofs (p), h; (p)), i = 1, 2, 3 which specify the poinp of the
algebraic curvd” defined by relations

h-*(p)z) © (hj(p)2> vi_i
L =K;;| . ,j=121,23, (2.1)
(h,« (p)? "\ n7(p)?
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wherekK;; are 2x 2 complex matrices of moduli satisfying
detK,‘j =1 K;i = K,*J'Kijki =1 (22)

and indices, j, k take values 12, 3 modulo3.
Further, we need the automorphisnon the curve defined as follows:

ni(t(p)) = hj(p) hy (t(p)) = —h; (p) j=123 (2.3)

The curvel’ can be defined in a different way which is also useful. Namely, for two
arbitrary pointsp andg on this curve the following combination:

_ 2 — 2
Apg = h{(p)*hi (@)° = hy (p)°h} (9)° (2.4)
should be the same for dll= 1, 2, 3. Itis easy to see that both these definitions are equivalent
to each other.
The Boltzmann weights depend also on spin variables. Each spin variable is described by
a two-vector

o = (aq, o2) o € Zo i=12 (2.5)
Then the functiorW,, («, B), &, B € Z, x Z» is defined as
Wyl B) = (=D)2“P g, (0,a — B) (2.6)

where
Q(a, p) = P1(Br — 1) + Pa(Pr — a1 + p2 — a2) a,peZyxZy (27)
and the functiorg,, (0, @) has the following form:

15552 (h3(p)h3 (@) — hE(@)h3 (P)(—1)7F)

oo 0-) = T2, TTSZ5(h: (p)hy (@) — B (@)hy (p)(—D)Y) 28)
We choose a normalization & ,, (e, ) as

W,,(0,0) = 1. (2.9)
Then it is easy to see that

Wop(et, B) = bap (2.10)
where

- 1 o= mod

Sap = { 0 othelrswis(e. i (2.11)

The functionW,, («, B) satisfies the inversion relation
D Wog(at, BYWyp(B. ) =8y @y (2.12)

BeZyxZy
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where the inversion factep ,, is given by
4E,,

Ppg =7 (2.13)
Pq
and

3 3

Epg = [ [ 1 (0)h7 (@ + [ i (k] (@) (2.14)
i=1 i=1
3

Dy = [0 A7 (@) + b7 () (@)). (2.15)

i=1

As was shown in [8] (see [9] for details) the Boltzmann weightsatisfy the ‘star—star’
relation which provide the integrability of the(n) chiral Potts model. This relation appears
as

W60 . W, .
qupqp’ (a’ ﬂv Y, 8) = qu’qp(a’ ,8’ Y, S)M (216)
Wop(v, B) Wqq(8,7)

where the two ‘star’ weights are defined as follows:
qu (Ol, U)Wp’q’(y9 U)Wq’p(a» ,3)

Wor (e, By, 8) = ZU: Fb.0) (2.17)

. Wy (0, V) Wyg (0, @) Wy, (8,

W2, By 8) = Y 2@ V)Wpfgz g; 100 9), (2.18)
o pats

The objects defined in (2.17) and (2.18) are the ‘star’ weights. As was mentioned
above, these weights correspond to the three-layer case of the Zamolodchikov model. To
be exact for the general case of the rapidity variahfeg) satisfying (2.1) the corresponding
Zamolodchikov modelisinhomogeneous in the third direction. Infact, we are mainly interested
in the homogeneous case

hi(p)=1 h; (p) = p. (2.19)

It is easy to see that the defining relations (2.4) are trivially satisfied. Therefore, we do not
need to work with the high-genus curie

As it was pointed out in [10] the rapidity variables can be parametrized in terms of the
spherical angles and excesses, as

! . 0 . 0 ia % o
4 _ _jtan2 P _jtan L e"g,/tan—ltan—z. (2.20)
q 2 p 2 q 2 2

3. Transfer matrices

Here we use slightly different definitions of the transfer matrices compared with [18]:

..... v ﬁ Wig Gk, Ji) Warp G k1) 3.1)
kel Wyrg Gy Tk+1)
Werq Gk k1) Wpg Gikets i)
""" Woq Gk i)

which are shown on figures 4 and 5, where we imply the cyclic boundary conditions- iy
andjy+1 = Jji1.

(3.2)
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We note that these definitions differ from the previous ones just by the diagonal equivalence
transformation. Of course, it does not effect the partition function.

Below, we use more simple notatiofis = T (p; ¢, ¢') andT, = T (p; q, ¢’) assuming
that the rapiditieg andg’ are fixed. Due to (2.16) these transfer matrifgand7, commute.
Namely, for two arbitrary rapiditiep and p’

[Tpa Tp’] = [’I_}J’ Tp’] = [Tpa Tp’] =0. (33)

One can consider some limiting cases. From (2.6)—(2.9) we can concludeghatifp
we have

T,=X" T,=X (3.4)
whereX is the shift-operator:
N
ijllszN = 1_[ Siy, jun- (3.5)
k=1
If ¢ — pthen
T,=1 (3.6)

while T has the singular matrix elements.

4. Functional relations

Further, we only consider the case of the homogeneous three-layer Zamolodchikov model.
Due to the commutation relations (3.3) we can diagonalize the transfer mafyicesd 7,
simultaneously.

Let us denote eigenvalues Bf andT,, by ¢ (p) andz(p) where we omit a dependence on
g andq’.

In the appendix we outline the proof of the following pair of functional relations

1(p)t(p)t(—p)t(—wp)
= ¢ 1(p)t(—wp) + ¢ i1(—p)t(—wp) + $Y 1(p)t(wp) + $Y T(—p)t(wp)  (4.1)
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and
t(—wp)t(—p)t(p)t(p)
= ¢'5 [(—wp)t(p) + ¢'Y i(—wp)t(—p) + ¢S F(wp)t(p) + ¢'3 1(wp)t (—p) (4.2)

where . )
(p+wq)(p+owq) (p+wq)(p+wq)
bo=14 (p+q)? h=14 (p+q')? *:3)
by — 4P+ o tq)*(p+olq)(p — wq)
(p—?)(p+@)?(p+q)(p—wlq) (4.4)
o aP 4Pt ¢ (p+ 0™ q)(p — wq)

T (p— %) (p+g)2(p+g)(p—owlq)
and¢; can be obtained from; by the substitutioy — —g. Herew is the root of unity of
power three

+27i

w=€3 .,
From the limiting cases (3.4) and (3.6) we have some initial data
1(p;q, p) =Q i(piq.p) =" t(p;p.g) =1 (4.5)
whereS is some root of unity of powew:
QN =1 (4.6)
From (4.1) and (4.2) one can see that the pair of functibasd:’
t'(piq.9) =t(p; —q,49) t'(piq,9) =1t(p; —q,9) (4.7)

satisfy the same relations (4.1) and (4.2). However, itis nottruetpay, ¢') =t (p; —q., q’)
for all eigenvalues. The transformation (4.7) also interchanges the eigenvectors of the transfer
matrices which belong to the same symmetry sector.
The analysis of the eigenvalugg) andz(p) shows that it is convenient to extract some
‘kinematic’ multipliers:
2V - 2N
P+ (p+ q’)Ns(p) ") (p—)(p+qH" @) (4.8)
wheres(p) ands(p) are the polynomials of the degreen the variablep. So far, we have
no proof that the degrees ofp) ands(p) should be the same. Therefore, we accept it as a
conjecture.
Substituting the definitions (4.8) into (4.1) and (4.2) we obtain the functional relations for
s(p) ands(p):
5(p)s(p)s(—p)s(—wp)
= Ao 5(p)s(=wp) + 115 (=p)s(—wp) + 13 5(p)s(wp) + AJ5(=p)s(wp)  (4.9)

t(p) =

and
s(—wp)s(=p)s(p)s(p)
= N 5(—wp)s(p) + X'y S(—wp)s(—p) + X3 5(@p)s(p) + 13 §(wp)s(—p)
(4.10)

where

ho=(ptog)p+oq)(p+q)(p—q)

M= (p+togd)ptoqd)p+qo)(p—q)

he=(p—q)(p+o ) (p—og)p-q)

r=(p—q)p+w g )p—og)(p—q)
andi; can be obtained from; by the substitutioy — —g.
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5. Bethe ansatz equations

To construct the Bethe ansatz we consider zeros of the polynomijalsinds (p):
s =anq. "V [J(r—r>) ) =auq.aH[[(p— b0 (5.1)
i=1 i=1

where the powen takes only two possible valuegv2zand 2v — 1. The functions:, anda,
should be compatible with the initial conditions (4.5). Unfortunately, it is not easy to calculate
them explicitly but their product looks very simple:

an(q.q)an(g.q) =4  av-1(q.q"azn-1(q.q) = N(q"* — 4?). (5.2)
Now we can sep to be some zero of the LHS of (4.9) and consider the equations which
follow from the RHS. In fact, we have four possibilities to do this:
P = Di P — —Di p— —op; P = pi. (5.3)
It is not difficult to obtain that the first three possibilities give us two different sets of Bethe
ansatz equations:

A S F1
f(psz ’ ) — ( 1)71 11_[ pl w lpj (54)
f(pi» =t =g i1 b —oTp;
and
. +1 N :F
fgp,,w . q) —— 11—[ pito lp, (5.5)
f(piv wilv _q,) j=1 p’ - a):F ]
where
— X
Fpx,q)=2""1 (5.6)
P"'q

The fourth possibility in (5.3) gives some complicated compatibility conditions for the solution
to the Bethe ansatz equations (5.4) and (5.5). Of coyrsand p; are the functions of and

q’'. A similar consideration of the second functional relation leads to the same Bethe ansatz
equations (5.4) and (5.5). Itis obvious thép) ands(p) are homogeneous ip, ¢, ¢'. So let

g=1 p=ix q =iy (5.7)
wherex, y arereal.

Conjecture.

S(x,y) =s5"(x,y). (5.8)
We checked this numerically fay = 2, 3. Let us set

pi = iri(y) pi = iri(y). (5.9)
Then

spy=aWi"[[x=r) sy =awi"[Jec-rG).  (5.10)
i=1 i=1
From (5.4) we obtain
ay) = (=1"a*(y) Fi(y) =ri(y) i=1..,n (5.11)
It is easy to see that (5.5) can be obtained from (5.4) by a complex conjugation. Somehow,
this is the ‘proof’ of the conjecture (5.8). Then we have

(ri — y)(ir; + ) - —r B
[(r,-méy)(ir,.—l)] =D H—rl_w & e=# 61

One can obtain, from (5.12), the set of equations on absolute values and phases of
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6. Discussion

In this paper we have only presented the Bethe ansatz equations. We shall give the detailed
analysis of these equations elsewhere. The technique we use here is in the spirit of the Baxter’s
Q-matrix method [12]. The role of th@-matrices is played by the one-layer transfer matrices.

It corresponds to the result obtained by Bazhanov and Stroganov in [11] for the chiral Potts
model. We think that the algebraic Bethe ansatz technique can also be developed. However,
there are some problems, such as an appropriate choice of the reference state, which are
presently beyond our understanding.

We should note that the functional relations we have derived here and those which were
obtained in [18] can be considered together. Perhaps the combination of all these relations
could give more information about the eigenvalugs) andz(p).

We hope that the result obtained by Baxter in [7] for the partition function of the
Zamolodchikov model on the latticeo x oo x 3 can be reproduced in the thermodynamic
limit of the Bethe ansatz equations (5.4) and (5.5). We also hope that a standard programme
of a study of the excitations and finite size correctionst can be performed.

We think that the technique described in the appendix can be generalized stirthe
case. In principle, a general procedure seems to be more or less clear. However, the technical
difficulties could be, of course, much more serious.
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Appendix A.

Here we outline the derivation of (4.1). The second relation (4.2) can be obtained in a similar
way. In fact, we derive it for a general case of the inhomogeneous Zamolodchikov model. Our
key relation for the transfer matricds andT,, we would like to obtain looks as follows:

TPTP Tr(p) Tp‘ = q’év Tpr* + q>11v 7_wr(p) Tp' + q>12v TpTr(p') + CDIav Tr(p) Tr(p*) (A-l)
wherep* is one of two nontrivial solutions of the equation
+ +
B _ Oy (A2)
H, H,
where
3
Ay Diipr E A
H;E = l_[hii(p) Upg = _DM AT(p u Upg = _Ar(p)q _Dp . (A.3)
i=1 rq 2t(p*q T(p)g “p*q
and
qu qu’
q)o = 4D— CI)]_ = 4D (I)z = 4u,,qv,,qr CD3 = 4quu[,qr. (A4)

rq rq’

T See, for example, [13] and references therein.
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The functionE, D andA are given by the formulae (2.14), (2.15) and (2.4) respectively.

In fact, in our previous paper [18] we made the first step. Namely, we expressed the
matrix product?,T;(, as a sum of two termst. The first one corresponds to the first term
in the RHS of (A.1). The second term was written in terms of sdraperators. When the
vertical rapiditiesg andg’ coincide thisL-operator corresponds to the second fundamental
representatioB of the quanturs/(3) algebra. Therefore, we shall denote it/as

Now we have to perform the next step. Namely, we consider the matrix product

N
(T,L)g =Tr[ [ B, (. q: p) (A.5)
i=1
where
Wy (B, ¥) -
B (¢, q:p)]. =Y L2 L.(B, ). A.6
[B; 5a’ a3 P, Xﬁ: T (B, @) (A.6)
L is given by
Li;j(Ba) = ZC(l ) We(pyg (e, )Wy, (1, ﬂ)-w(#c(],rn) (A7)
t(pq (0, )

and all indicesy, 8, v, 8, n, m are two-component vectors taking one of four possible states
(07 0)7 (07 1)7 (17 O)? (17 1)7 i’ j = 17 2’ 31

C(2ky + ko, n) = 3(—1)famthenz, (A.8)
Inserting the identity matrices 8 3 between each pair & in the RHS of (A.5)

3
I=> ¢rli.0) x ¢r(i, ) (A.9)
i=1
where
(L, @) =(1,0,0) ¢L(2,a) = (—(=1)*"™*2,1,0) ¢L3, ) = (=(=1)*,0,1)
(A.10)
Pr(Ll, @) = (1, (=1)"™2, (=1)*) #r(2,) = (0,1,0) #r(3, ) =(0,0,1)
(A.11)
one can check that the transformed matrices
[B;5(a'. 43 P)],; = &G ¥) By 5(d'. 45 P)Dr (). §) (A.12)
satisfy the following property:
[B:5(q' q; P,y = [Bys(q', 4 Py = (A.13)

for all possible values of indices y, 5.
Therefore, we have a decomposition 1 + 2. It is not difficult to check that
(@, y)

[BS 5(q'. q: Py = Ppgr(— 1)yz+azL
) N " We(pyg (@, 8)

whered , is defined in (2.13). In the RHS of formula (A.14) we can recognize the ‘building
block’ of the transfer matrix(,,. So, after taking the product and trace as in the RHS of
(A.5) we obtain the second term in (A.1).

(A.14)

T We considered two casgés= 0, 1 corresponding to two automorhisra’ (see formula (3.2) of [18]). Here we
consider only the case= 1. A consideration of the case= 0 gives the same result.
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Now let us define 2 2 matrices with elements

[B2,(q'. q: P, = [B: (. q; ) i,j=12 (A.15)
The matrices@;(s(q’, q; p) have the form of the following matrix product:

B2 5(q'. q: p) = Vg (et Y)Upy (@0, 8) (A.16)

where
. Wq (m, n) .
[Upg (@, O)];; = ) xelism, @) =1 xr(jsn, 8 (A7)
e i sz W g (1, 8) We (g (at, 1)
and
[Vpg(ot, )] = Y x1.(5m, 8)We(pyq (ct, m)Wyp (m, m)Wpg (n, 8) xr(js 1, ). (A.18)
Here we use the following notations:
3
XL(R)(i;m,Ol) = ZC(]C, m)[d)L(R)(i +1; Ol)]k 1= l, 2. (Alg)
k=1

It is interesting to note thdf,, andV,,, satisfy the property which is similar to that fBr
given by (A.13)

[qu (a, 6)]1.0 = [qu(a, (S)]i0 =0. (A.20)
In addition, we have

d -
[Upg (@, O)]go = _%(—1)“2”2%1@(5, a) (A.21)

® .
[Vpy (s )] oo = _%(—1)“2 2We(pyg (e, 8) (A.22)

and®,, is given by (2.13).
Using the definitions (A.17) and (A.18) we obtain

1
— (1)t . — oD z12(p, g5 @, 8)
Upq(a, 8) = (=1 npq (a1, a2; 01, 82)<_Z32(;2’§]§1a’ 5) 1 (A.23)
Vg (@, 8) = (=12, (a1, tz; 81, 8) ( 1 ~u2(p. g: ¢, 8) ) (A.24)
z32(p, q; @, 8) 0D
where

_hi(phi (@) 24 h3(p)h3 (q)

vilp,q) = ————+= Npq(a1, az; 81, 82) = — =
h(p)hT(9) paith T T 02 Dpg Wpg(on + 1, az; 81, 85)
(A.25)
Y1(p, @) v2(p, q) — (—1)eatirtoztd
Z ( ) ;C\f, 8)2(_1)0(2 A26
12 q 1 (p-q) — (=)™ )ya(p. q) (A.26)
) ) - _1 atéy
cap i o, ) = (—ye P OV2P @) — (—D) (A.27)

(r3(p, @) — (=L)eatontaatiyyy (p, q)
Itis easy to see from (A.23) and (A.24) that the mat/iy, is connected witlV,,, by the
matrix inversion up to some coefficient:
vou. = . Ovap. )ys(p. q) — D(y2(p, @) = (=1)**2)n, 4 (01, a2; 81, 82)°
e (1(p, ) — (=1)"*) (ya(p, q) — (=D)erdrteatiz)yy(p, )2

(A.28)
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The important fact is a degeneration of these matrices which occurs when

(. 9v2(p, 9)vs(p,q) = 1. (A.29)

Using the ‘star—star’ relation for the Boltzmann weighitsand property (A.20) we can
prove that the matricel8 andV should satisfy the following important relation:

D Vg (@, V) Upg (@, 8) Vi (8, 8) Wy (v, ) Wiy (, 8)

W’ /’ & ¥ ¥ / / ’
= M Z Wp’q (V7 IB)Wq’p’(lgv 8) Vpp’(y ’ V)qu(y ’ IB)qu’(8 ’ ﬂ)
Wq’q(ys 5) B

(A.30)

From this relation we can deduce that choosing the rapidity varjabiesuch a way that
all matricesV,, are degenerate we get the decomposition of the matrices with the following
elements:

(DL q: p. PO = D Vg (0 ) Upg (0 )] W (v ) Wi (@, 8. (A.31)

It means that we can reduce the matridﬁ’;f’(q’, q; p, p) by the quasi-equivalence
transformation to the upper-triangular form. This technique is rather similar to that which was
used by Baxter for a derivation of th@-matrix equation for the six-vertex and eight-vertex
models [12].

So, first we should choose the point on the cysi provide the degeneration of matrices
V,.p. Therefore, we should fulfil the condition (A.29) for the pgir, p’):

va(p. Pv2(p, P)ys(p. p)) = 1. (A.32)
This equation has three solutions (up to some choice of signs). One of them
Apy =0 (A.33)

corresponds to the automorphism
p=1t(p). (A.34)

Two another solutions can be obtained by taking the second power of (A.32) and using (2.1).
In this way we arrive at the quadratic equation for the coordinateg’ afith coefficients
depending on coordinates pf Let us denote its roots as

p+ = 1+(p). (A.35)
Let us choose one of these solutions, for example,
p"=p+ (A.36)

and set the poinp’ in the formulae above to be*.
Itis easy to conclude from (A.24) that up to some factor the matiiggsare proportional

to
e @ Vf]/g'—(—l)a1+51+a2+52
Vo (@, §) ~ 1 D (i —(=D1*1)y; (A.37)
pp s (D2 —(=1°1) 1 :
ylnyzw_(_l)a1+61+a2+52 7/5
where

v =vi(p, p"). (A.38)
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So, the vectors which provide the decomposition 1 + 1 can be chosen as:

*x. % _ (_ 1\a1+81+0+ss
LELaH =00  @ad)=(—(—peliZi_CD , (A.39)
yi — (=1)eth
* _1 a1+
;R (27 «, 8) = (07 1) CR(ls o, 8) = <1» (_1)052 ]/*)/):1 (( 1)0?1+51+0t2+82) (A40)
172 — \—
which satisfy the natural condition
2
> R o 8) x iz, 8) = 1. (A41)

i=1
Now let us consider the transformed matridéf;f:
T o, 5 . o
(D)5 (4’ q: P)),; =Ly, vIDy 5 (@' g py PR3 6. 6) (A.42)

wherei, j =1, 2.
One can check the decomposition property

(D74 q: p)],, = 0. (A.43)

Now we should study diagonal elements of these matrié%%‘sf(q’, q; p)]”, i=1,2.
It can be checked that the following expressionsiigrare valid:
A;(8',6)

DIV Pl = Aig g p) e WET ) (8,8 A.44
[D, 5 (4’ .q: P, . q p)Ai(y/’y) va (8,78 (A.44)
wherqu”,’;(”')(J/, 8,y’,8) is given by (2.18) and
pL=7p p2 =1(p). (A.45)
For the scalar functiona; we have
A1(q', g5 p) = Bvgpug, A2(q', q; p) = Bug vy, (A.46)
and the functiong andv are given by (A.3). The gauge matricésare given by:
1 al aj 1 1 ar —daz -1
_ ag 1 1 ag _ —dap -1 1 as
Al - —dadx -1 -1 —dadx A2 - as 1 -1 —daz (A47)
-1 —da; —aa -1 -1 —d az 1
where
h_ h+ * + h+ h— *
ag = 3 (p) 3(17 ) 3(P) 3 (p*) ar = —1/ay. (A.48)

"~ h3(p)hs(p*) — hi(p)hs (p*)

So, we have succeeded in reducing the four-index objéﬁg[(q’, q; p)]ii tothe original
‘star’ form. It is not difficult to observe that after taking the product and trace we obtain the
last two terms in (A.1). Using commutation relations (3.3) we can simultaneously diagonalize
the transfer matrices and get the functional relation for the eigenvalues. Taking into account
that for the homogeneous case of the Zamolodchikov model the automorplasts just as
negating ofp:

(p) = —p. (A.49)
and rapidityp* can be taken as
p=—wp (A.50)

we come to (4.1).
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